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We consider a nominally uniform flow over a semi-infinite flat plate. Our analysis 
shows how a small streamwise disturbance in the otherwise uniform flow ahead of the 
plate is amplified by leading-edge bluntness effects and eventually leads to a small- 
amplitude but nonlinear spanwise motion far downstream from the leading edge of 
the plate. This spanwise motion is then imposed on the viscous boundary-layer flow 
at the surface of the plate - causing an order-one change in its profile shape. This 
ultimately reduces the wall shear stress to zero-causing the boundary layer to 
undergo a localized separabion, which may be characterized as a kind of bursting 
phenomenon that could be related to the turbulent bursts observed in some flat-plate 
boundary-layer experiments. 

1. Introduction 
Much of our information about boundary-layer phenomena derives from 

experimental measurements made in flows over relatively thin flat plates embedded 
in nominally uniform free streams. Such experiments are attempts to simulate the 
flow over an infinitely thin flat plate embedded in a completely uniform stream and 
it is important to know how relatively small imperfections in the experimental 
environment can affect the final measured results. 

This paper shows how small, but steady, variations in the upstream velocity field 
can produce somewhat larger streamwise vorticity fields which can, in turn, produce 
significant (i.e. order-one) variations in the streamwise boundary-layer profiles. 
These variations could, for example, be quite important in the boundary-layer 
transition experiments, which are frequently conducted with flow configurations of 
the type being considered herein. In fact, there are many experiments of this type in 
which instability wave growth is found to occur upstream of the theoretical (i.e. two- 
dimensional flat-plate) lower branch of the neutral stability curve or in which the 
observed instability wave growth rates exceed the theoretical values. Some of these 
observations may, in part, be explained by the present results which show that the 
free-stream disturbances cause the local wall shear to become very small at  certain 
discrete spanwise locations. This could easily move the lower branch of the neutral 
stability curve upstream, or at least augment the local growth rate of the instability 
waves and thereby explain some of the experimental observations. These issues, 
while quite interesting, are not pursued in the present work which concentrates on 
understanding the basic steady flow. 
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Crow (1966) also considered the steady distortion of flat-plate boundary-layer 
flows by free-stream non-uniformities, but that work is quite different from ours. 
This is mainly due to  a difference in the basic scaling that allows our free-stream 
disturbances to become fully nonlinear before viscous effects can set in. This, in turn, 
has an important effect on the subsequent development of the flow and leads to an 
asymptotic solution that explicitly exhibits some interesting features of the motion 
which would otherwise be obscured by viscous phenomena. In  this regard, it is worth 
noting that leading-edge bluntness effects play a central role in the present work, 
while Crow (1966) is able to consider an infinitely thin flat plate. 

We assume that the characteristic dimension of the rounded leading edge is of the 
order of the spanwise lengthscale, say A, of the upstream disturbance field, and that 
the Reynolds number based on A, say R,, is large. Then the upstream distortion 
interacts linearly with the leading edge with the resulting flow being well described 
by the usual ‘rapid distortion’ theory (Hunt & Carruthers 1990; Goldstein 1978). 
The relevant analysis was, at least in principle, given by Lighthill (1956) who showed 
that the upstream distortion produces a crossflow velocity field that becomes 
logarithmically infinite a t  the surface of the body. This singularity must ultimately 
be removed by viscous effects, which (as in Toomre 1960) are confined to the viscous 
boundary-layer region (with the Reynolds number-amplitude scaling being 
considered herein). Our analysis shows that inviscid crossflow effects produce only a 
linear perturbation to the boundary-layer flow in the vicinity of the leading edge, 
where the undisturbed boundary layer undergoes its most rapid streamwise 
development, but that they produce an order-one change in the mean boundary- 
layer profiles at large distances downstream where its streamwise development is on 
a considerably slower scale. 

However, the linear rapid-distortion- theory solution, which provides an adequate 
description of the external inviscid flow in the vicinity of the leading edge, breaks 
down a t  large streamwise distances, with the breakdown moving further upstream as 
the surface of the plate is approached. A new nonlinear solution then has to  be 
obtained in order to  describe the external inviscid flow in the physically interesting 
region where crossflow effects produce significant (i.e. order-one) changes in the 
boundary-layer profiles. The thickness of this nonlinear inviscid region is small 
compared to its streamwise dimension but large compared to the boundary-layer 
thickness. It serves as a kind of ‘ blending layer ’ that  connects the boundary-layer 
solution to the linear rapid-distortion-theory solution, which applies a t  an order-one 
(on the scale of A )  distance from the wall. 

The blending-layer flow is governed by the inviscid Burgers’ equation (sometimes 
called the kinematic wave equation) whose solution eventually develops a singularity 
a t  a certain spanwise location and a t  a finite downstream position owing to the well- 
known wave steepening effects associated with that solution. This also leads to a 
singularity (signified by the vanishing of the wall shear) in the boundary-layer flow 
a t  the same (spanwise and streamwise) location. 

New local solutions to the blending and boundary-layer problems have to be 
worked out in order to describe the structure of these regions. We show that the two 
solutions can be matched in an appropriate overlap domain. The boundary-layer 
solution actually develops a double-layer structure as it approaches the singularity 
so that the overall asymptotic structure has three layers in the vicinity of the 
singularity. The main purpose of this paper is to investigate the relevant structure 
of this local solution. 

The overall plan of the paper is as follows. Section 2.1 describes the linear inviscid 
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flow produced by the steady upstream distortion field and the initial breakdown of 
the relevant linear ‘rapid-distortion ’ theory solution is discussed in $2.2. The 
appropria,te nonlinear, but inviscid, solution that eliminates the breakdown is 
described in $3.  In $4 we show that this solution develops a line singularity somewhat 
further downstream and that this singularity can, in turn, be eliminated by a new 
local solution to  the problem. 

The viscous boundary-layer problem is formulated in $5. The solution to  this 
problem develops a singularity at the position of the inviscid singularity and the 
terminal form of the boundary-layer solution is worked out in $5.2. This local 
similarity solution has a double layer structure with an outer inviscid region and a 
viscous wall layer. A new expansion which applies in the vicinity of the singularity 
is worked out in $5.3. This solution has the same streamwise lengthscale as the 
external solution and it is shown that the two solutions can be matched in an 
appropriate overlap domain. 

The numerical solutions to the boundary-layer problem are described in $6. They 
show that it exhibits a rapid thickening in the vicinity of the singularity, which 
might be characterized as a kind of ‘bursting ’ of the boundary layer - a phenomenon 
which has, up to now, primarily been associated with unsteady flows. This might lead 
to a local breakdown of the laminar boundary layer and thereby provide a possible 
mechanism for by-pass transition. These and other issues are discussed in $7.  

2. Formulation and breakdown of linear solution 
We are concerned with the flow over a semi-infinite flat plate of finite thickness h* 

with leading edge ‘ellipse’ of dimension O(t*) (see figure 1). The upstream flow is 
assumed to be nominally uniform, except for a small O(e)  steady perturbation, say 
EU, u,(z), in the streamwise velocity that depends only on the spanwise coordinate 
hz and has a characteristic lengthscale A ;  u,(z) is an order-one quantity. We 
normalize all lengths by h and the velocity u = {u, w, w} is normalized by the uniform 
upstream mean flow velocity U,. The flow is assumed to be incompressible, with 
density p.  The pressure p is normalized by pP,. The plate thickness h* is, for 
simplicity, taken to be O(h),  and the x-coordinate is assumed to  be in the streamwise 
direction with the origin a t  the leading edge while the origin of the y-coordinate 
coincides with the flat surface of the plate far downstream in the flow. 

Finally, we require that the Reynolds number R, = U,h /v ,  where Y is the 
kinematic viscosity, be large enough to ensure that the viscous effects are initially 
confined to a thin boundary layer a t  the surface of the plate that  is predominantly 
t.wo dimensional near the forward stagnation point. This will occur (and the 
boundary layer will then remain thin until nonlinear effects influence the external 
motion far downstream in the flow) if 

(2.1) 
1 

In R, < - < R,, 
8 

which we now assume to be the case. 

2.1. The linear solution 
Then the entire flow is nearly two dimensional in the vicinity of the leading edge, i.e. 
in the region where x = 0(1), with the three-dimensional effects being an O ( s )  
perturbation of the two-dimensional base flow, say {Uo(x, y), V,(x, y), O } .  The viscous 
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In R, 4 I / €  4 R, 
R, = U , h / v  

FIQURE 1. Flow configuration. 

effects are confined to a thin region whose thickness is O(R;f). The solution outside 
this region should therefore expand like 

u = {.Yo, v,,o>+E{U0,210,Wo}+E~{U1,w~,Wl}+ ... = {Uo, V 0 , O } + € U o + € ~ U 1 +  ... , (2.2) 

(2-3) p = P0+€po+€2p1+ ... . 
The complex conjugate mean flow velocity [ =  U,,-iV, (which is assumed to 

include the O(R,i) boundary layer displacement effects) is an analytic function of 
2 = x+i[y+(h*/h)] that can be expressed in terms of a complex potential, say 

IV = Q+iY,  (2.4) 

where @ is the velocity potential and Y is the stream function, in the usual way by 

For definiteness, we suppose that Y = 0 on the surface of the (body) plate and 
along the stagnation streamline, and that Q --f 0 a t  the forward stagnation point. 

The first-order perturbations are governed by the linearized Euler equations and 
the results obtained by Goldstein (1978) (also see Goldstein 1979) can readily be 
specialized to the present case to show that t,he relevant solution can be written as 

uo = vd+%JZ)VA(x,Y)’ (2.6) 

where 

A = @ + r  [ 1 - l ] d 6  
-m q( Y ,  6) + Jq( Y ,  6) 

is the Light.hil1 (1956)-Darwin (1954) drift function, and the normal component of uo 
must vanish a t  the surface of the plate. 
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2.2. Breakdown of the linear solution 
The expansions (2.1) and (2.3) are non-uniform in the vicinity of the plate. In fact, 
it follows from these equations, along with the results of the Appendix, that  the 
crossflow velocity w, becomes infinite there like 

(2.10) 

where a is a constant related to the local potential flow behaviour in the vicinity of 
the forward stagnation point and the prime denotes differentiation with respect to z 
(also see Lighthill 1956). The remaining velocity components, as well as the pressure, 
remain finite. The strongest non-uniformity occurs in the stagnation-point region 
where the mean flow goes to  zero. In  fact, i t  follows from the results of the Appendix 
that qvo becomes of the same order as P, a t  an O(&) distance from this point. 
However, the linearized equations still give the correct solution (to the order of 
interest here) right up to the edge of the viscous boundary layer and this non- 
uniformity need not be considered further. 

However, another, much more important, non-uniformity develops far down- 
stream in the flow where x becomes large. To understand its structure we note that 
asx+oo 

Y+y, U o + l ,  @+x, A+A+(y)+x,  (2.11) 

(2.12) 
where A+(y)  = ( ~ - l ) d @ + d o ( y ) - a l n y  1 as y+O 

-a3 G + E  
and do remains bounded as y --f 0. 

We now suppose that x is large and introduce the new dependent variable 

4 = d +u&) A + W .  (2.13) 

Equations (2.6) and (2.8) then show that 

V2$ = u: A+, 

and the normal component of uo will vanish a t  the plate if 

(2.14) 

(2.15) 

It now follows from (2.12) and (2.15) that  6 becomes independent of x and, 
consequently, that (see (2.7)) 

(2.16) 

Po + 0, (2.17) 

- 
(2.18) 

u; yz 
and 4 -+/3(z) ---1n y as y + 0. 

a 2  

Substitut,ing (2.2) and (2.3) into Euler’s equations and using the second member of 
(2.11) along with (2.14) shows that 

(2.19) 
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awl apl U L U ;  -+-+-- ln2y as X + W ,  y+O. ax aZ a2 

Then since u, satisfies the continuity equation 

it follows from these results that  
v - u ,  = 0, 

V2p,+-2 -1ny as y+O, X + W ,  r: 1 
and, consequently, that 

uLylny 
as y+O, X + W .  

(2.20) 

(2.21) 

(2.22) 

(2.23) 

(2.24) 

(2.25) 

It now follows from (2.2), (2.3), (2.10), (2.11), (2.16), (2.17) and (2.20)-(2.22) that  

(2.26) 

(2.27) 

(2.28) 

as X + W ,  y+O. 
It is clear that  this linear expansion must break down when 

-exlny = O ( 1 )  (2.29) 

and that a new solution must then be found for this region. 

3. Blending-layer solution 

and introduce the new gauge functions a(€) and 8(e), where (see also (5.4)) 
To obtain this solution we anticipate that viscous effects will still be unimportant 

+ O  as e+O, (3.1) 
1 

a(€) = -- 
In a ( ~ )  

along with the new scaled variables 

and InY 7 = -a ln  y = -. 
In S (3.3) 
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The necessity of using logarithmic variables in problems of this type was pointed out 
by Lagerstrom & Casten (1972) and by Bush (1971) (see also Agrawal & Messiter 
1984). 

We simplify the algebra by using the new independent variables 

E = z, (3.4) 

and 9 in place of z and 7. Then the Euler and continuity equations become 

and 

Equations (2.26)-(2.28) suggest that the solution in this region will be of the form 

u = 1 +€[,aO(&, r)+a5z,(E, 2) + ... I, (3.7) 
7 

and p = ezd(z)+- ( -e-l/' 1 [r2Po(E9 4 + w % ( E ,  2) + . * .  1, (3.10) 

where ,ao, all F,, q, m,, etc. are, of course, assumed to remain O(1) in the 'blending 
layer ' limit +. 0 with E,T,I, z held fixed. 

Substituting these into (3.5) and (3.6) and retaining only lowest-order terms, we 
obtain 

2 a  

(3.11) 

(3.12) 

(3.13) 

and vo+- am0 - - 0, (3.14) 
a2 

respectively. Equation (3.13) can be solved for m0, and the result can be used in (3.14) 
to determine v0, which can, in turn, be used in (3.12) to determine Po. In  fact, 
substituting (3.14) into (3.12) and using (3.13) shows that 

(3.15) 

Equation (3.11) can, of course, be solved for a,. 
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It is well known that the general solution to the kinematic wave equation (3.13) 
can be written implicitly as 

w, = F(z-w,6) ,  (3.16) 

where F is an, as yet, undetermined (i.e. arbitrary) function of the indicated 
argument. This solution must match onto the linear solution (2.27) in the limit as 
q + O  with z fixed, and in the limit z + O  with 7 fixed -both of which correspond to  
the limit 6 --f 0. 

Expanding (3.16) for small 5, we obtain 

mo = F ( z )  -F’(z)F(z)  YE+.  . . . (3.17) 

It therefore follows from (3.2) and (3.3) that  (3.9) becomes identical to (2.27) when 
F is taken to be 

F ( z )  = --. u 3 4  (3.18) 

Equations (3.3) and (3.4) show that 6 = z(l -a lny)  so that in the ‘small’ sublayer 

a 

g = = O(1) (3.19) 
6 

of the much thicker region 7 = O ( l ) ,  (3.16) becomes 

m, = F(Z-Z@,) for = O(1).  

At next order we find that a, satisfies 

(3.20) 

where we have used (3.13) and (3.14) to obtain the last member. This equation 
possess the general solution 

m, = mo[mot G(z- ZZ, 6 )  + (1  - 6woz) In lwozl], (3.22) 

where 6 is an arbitrary function of the indicated argument that is determined by 
matching with the upstream linear solution of $2.1. In  fact i t  follows from (2.2), 
(2.12), (2.16), (2.18) and (2.27) that G is given by 

ad,(O) -ay(z) - In luk(z)/al 

u2(4 
B(z) = -a  , 

where we have put 

(3.23) 

(3.24) 

4. Removal of infinite singularity 

all 6 > 0. In  fact, differentiating (3.16), with respect to z, shows that 
It is well known that the kinematic wave solution (3.16) does not remain valid for 

which becomes singular at 6 = - l/F‘. Here, the prime denotes differentiation with 
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Line of singularities7 
--EX in y = 6, 

,I‘ 

Streamline 
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curvature 

5.4 = O ( d  
Urn - 

Blending layer //’I I I/ 

Surface boundary layer ’ 

FIQURE 2. Inviscid singularity structure. 

respect to the entire argument. The initial singularity (if there is more than one) 
occurs a t  the downstream location, say E,,  given by 

where (4.3) 

which means that q’ = F / F f 2  should equal zero and F“‘ should be positive there (see 
figure 2). We denote the corresponding value of z by z,. The solution becomes 
multiple valued for 6 > 6, but can be made single valued by allowing mo to  be 
discontinuous across the downstream portion of an appropriate surface which 
reduces to the z = z, plane for the symmetric flow discussed below. 

Then since we can always assume that F(Y),  as defined by (3.18), is an analytic 
function of 6, this quantity can certainly be expanded in a Taylor series about 
w,, z,, 6, = - l/F’(C,) to obtain 

1 c3 

which can be solved for mo-ws to obtain 

rn.-ws=A(T)B(X)+...,  3 6,-6+ 

where we have put 

and B, which is given by 

B(C) = [(~+l)”@-[(~+l)”LJQ” 

(4.5) 
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B3+3B-26= 0 (4.9) 

for any (real or complex) value of 6. 
Equations (3.14) and (4.5)-(4.9) describe the singularity structure of vo and mo a t  

the point t s , z s .  We now construct an appropriate local solution that removes the 
infinite singularity in vo. We can suppose, without loss of generality, that  the 
singularity occurs a t  z, = 0 and, for definiteness, we consider only the case, 
corresponding to  our numerical example, where z = 0 is a symmetry plane and w, is 
therefore equal to zero. Then p ' (z )  will be an odd function of z which vanishes at 
z = 0, which means that y(z) remains finite there. 

Expanding (4.8) for small 5 and using (3.9), (3.22), (4.1) and (4.5) we find that 

where we have put 

The first significantly different scaling occurs when 

(4.11) 

(4.12) 

where we inserted the l n a  shift in the singularity position to facilitate matching 
logarithmic terms. 

Then (4.6) shows that the appropriate 'z-scaling' is 

(4.13) 

and that the dependent variables should scale like 

u = 1+0(€) (4.14) 

and 

(4.15) 

(4.16) 

(4.17) 

where vI, mI, and pI remain of order one in the limit as t + 0 with 7, and z held fixed. 
Substituting into (3.5) and (3.6) and retaining only the lowest-order terms now yields 

(4.18) 

(4.19) 
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and (4.20) 

which clearly generalizes (3.11)-(3.14). The new terms are, in the main, due to 
singularity line curvature effects. Notice that the spanwise and vertical velocity 
fields are now fully coupled. 

Eliminating g, between (4.19) and (4.20) we obtain 

(4.21) 

The solution to this equation must match onto the inner expansion of the outer 
solution in some overlap domain. We therefore require that 

(4.22) 

as c+- co (and probably even as [+ + CO) and/or z++ co, with %/g 2 O(1) and 

.z 
as g+-co with - -O(1) .  (4.23) %- 

Using Monge’s procedure (Ames 1965, pp. 58-65) we find the first integral of (4.21) 
to be (this result is most easily verified by direct substitution) 

(4.24) 

(4.25) 

where G I - &  - -1 , (4.26) 

and g, is an as yet undetermined function of the indicated argument. However, the 
boundary condition (4.23) implies that 

g,(@,) = -~,[E~+m~+lnIm,I] .  (4.27) 

Notice that the inconvenient absolute value signs can now be omitted because the 
argument of the log term in (4.25) and (4.27) is (i3mI/tl[)/mI, which is always positive. 

Solving for aU,/agand integrating the result with respect to [shows that mI is 
given by 

(4.28) 
d7 

p ( q + r l  exp[-(z/7)--2]- = -exp[-g+tAI for Z>< 0, 
7 T m  

where p(g is an arbitrary function of Z. 

Substituting (4.28) into (4.19) now shows that V, is given by 

(4.29) 

and therefore, unlike thc blending-layer velocity vo, remains finite a t  all points of 
space. However, it will exhibit exponential growth as E+ 00 unless p(q = const. 
More importantly, however (4.28) implies that 

mr+~c as g++co for z><o,  (4.30) 
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when p(z) = 0. (4.31) 

In  which case (4.9) and (4.22) show that (4.28) will match directly onto the blending- 
layer solution (3.16) as r++m and there will then be no need to introduce any 
intermediate regions to connect up the solutions. Two of us (M.E.G. and S.J.L.) 
believe this is the appropriate choice of p (see figure 2). However, it follows from 
(4.28) that mI will then be discontinuous across F = 0 for any finite value of 5 
Fortunately, this discontinuity decays like an exponential of an exponential of Eand 
is therefore not incompatible with the upstream blending-layer solution, which is 
continuous across z = 0. This does, however, suggest that there might be a very small 
O(expexp5) region where matching does not occur. This region can probably be 
eliminated by viscous effects. These issues will be pursued in a forthcoming paper. 
Notice that v1 will always be continuous across z = 0 even though like the external 
blending-layer solution, may be discontinuous there. However, it may be possible 
to eliminate this discontinuity by breaking the symmetry about z = 0. 

5. The boundary-layer expansion 
Viscous effects must also come into play when y becomes sufficiently small. The 

resulting boundary layer will initially be two dimensional with the crossflow effects 
producing only a linear perturbation (as in Toomre 1960) until its thickness becomes 
of the order of the lengthscale AS introduced in $3. We therefore suppose that 
tj = O ( l ) ,  introduce the long streamwise lengthscale 

(5.2) 
L* 

AS = - Ri ’ and set 

where 
u, L* RE- 

V 

is the ‘global’ Reynolds number based on L*. It then follows that 

S =  1 
(R, e In [ 1 /S] )f ’ 

which, in view of (2.1), is consistent with our assumption (3.1) that S -4 1 .  
We first consider the region where [E-EJ % u. 

5.1. The early three-dimensional region 
We expect the streamwise velocity 

u = V(E, 8 , Z )  

(5.3) 

(5.4) 

(5.5) 

to be 0(1) in this part of the flow and in order to satisfy continuity we put 

‘u = - eS( In 6) V ,  (5.6) 

w = -e(ln6) W ,  (5.7) 

where Vand Ware, of course, assumed to remain 0(1) as s+O. Equations (3.3), (3.10) 
and (3.18) suggest that 

in this region 
p = e2 d(z) + O(E6ln S)2 (5 .8)  
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Substituting these scalings into the NavierStokes equations yields the three- 

and 

au au au azu u-+v-+w-=-, 
a 3  ag aZ ap 
aw aw aw azw u-+v-+w-=- 
az ag aZ a@ 

au av aw 
az as az 
-+-+- = 0. 

(5.9) 

(5.10) 

(5.11) 

U must clearly go to unity as g+co in order to match with (3.7). The boundary 
condition for W is a bit more subtle. The known properties of the boundary-layer 
solutions suggest that the cross-stream derivatives should become small as g+ m . 
Equation (5.10) therefore becomes 

aw aw 
a% a Z  
-+w--0, 

whose solution is given by 
W = G(z-TW). 

(5.12) 

(5.13) 

This will clearly agree with (3.16), and (5.7) will therefore match with (3.9) if we 

G = F, (5.14) 

where F is given by (3.18). It is worth noting that the continuity equation (5.11) 
automatically ensures that (5.6) will match with (3.8) and (3.14). 

take 

The appropriate boundary conditions for (5.9)-(5.11) are therefore 

U +  1,  W+P(z-zW) as 8’00, 
U = V = W = O  a t  g = O  

(5.15) 

(5.16) 

and since the crossflow effects become small as z+O, U must go to the Blasius 
solution in this limit, i.e. 

U + U , ( z , g )  as z+O. (5.17) 

The solution to this problem should, of course, become singular a t  the inviscid 
singular point 6,. 

5.2. Terminal form of early three-dimensional solution 
It is first necessary to find the terminal asymptotic form of the solution to the initial 
boundary-layer problem (5.9)-(5.11) in order to extend the boundary-layer solution 
through the singularity. For simplicity, we again consider only the case, 
corresponding to our numerical example, where the crossflow velocity vanishes at the 
singularity. 

We expect the solution to  be of similarity form in the vicinity of the singular point 
6, and the numerical results suggest that i t  develops a double-layer structure with a 
thick, predominantly inviscid, outer region and a somewhat thinner viscous 
dominated sublayer. We therefore begin with the outer region, put 

g = (6, - Z)’ g, (5.18) 
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and 

with y > 0 and seek a solution of the form 

u = f(y”, z”), 

and W = (&-Z)$h(g,z”).  

It follows from (5.9)-(5.11) that  

(5.19) 

(5.20) 

(5.21) 

(5.22) 

(5.23) 
ah ah 

- ~ h + ( g - y g f ) - + ( h + @ f ) -  = 0, az 

(5.24) af af 
aY az ( g - y g f )  :+ (h+$zf)  - = 0, 

(5.25) 

The value of y may, in general, depend on the choice of upstream distortion ul,, but 
for the case, corresponding to our numerical example, where the singularity lies on 
a symmetry plane, h must behave like h,(y”) z” as z”+ 0 with the Z-derivatives off and 
g vanishing on this plane. It follows from (5.24) that either af/aij must vanish or 

9 = Ygf.  

h , + y f  = 0, 

y = l ,  

Our numerical results suggest the latter, and (5.25) therefore implies that 

which will only be compatible with (5.23) if 

which, in turn, shows that 
h , = - f  on 2 = 0 .  

Equations (3.7)-(3.9), (3.14) and (4.5)-(4.7) require that 

f-1, 

g+-y”h’, 
asg+co,  for all -a < z ” <  CQ. 

form 
Upon eliminating g-ygf between (5.23) and (5.24) we find that h must be of the 

3 
h = - -  (5.33) 

(5.26) 

(5.27) 

(5.28) 

(5.29) 

(5.30) 

(5.31) 

(5.32) 

where B is defined by (4.8) and/or (4.9) and fi is an as yet undetermined function of 
f which, a t  least in our numerical example, remains bounded at f = 0 with 

(5.34) H ,  = A(0) * 0. 
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The boundary condition (5.31) requires that 

and expanding B for small z" shows that 

h+-z"f 

boundary layer 

f+1, 
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(5.35) 

(5.36) 

as z"+O with l? = O(1).  The inviscid boundary condition at the plate requires that 
g + 0 there, but our numerical solution suggests that the stronger, viscous type, 
condition 

f - i j  as i j + O  (5.37) 

actually holds a t  this point. We will show that there is a self consistent solution that 
satisfies this condition. 

Eliminating g-yijf between (5.24) and (5.25) and substituting (5.33) into the 
result shows that f is determined by the nonlinear partial differential equation 

fG fiG - f f  fGG = ;l? @(@)fl, (5.38) 

where we have set y = 1, put 
G(6) = In [B2(6) + 11, (5.39) 

and, as usual, the prime denotes differentiation with respect to the complete 
argument. It is easy to verify by inspection that (5.38) has a first integral of the form 

- = [B2(p2)+l]P(f), 
a?7 

(5.40) 

where 
that the solution to (5.38) that satisfies (5.37) is given by 

is an, as yet undetermined, function off. Integrating with respect to  i j  shows 

Equations (4.8) and (5.40) imply that 

E = ( $  i - 0  9 

(5.41) 

(5.42) 

which can be determined from the numerical solution on the symmetry plane, which 
in turn shows that (af/ag)i,, goes to a non-zero constant, say 6 as y" + 0. It therefore 
follows from (5.24), (5.33), (5.34), (5.40) and (5.42) that 

'. s 
f+6(l+B;)#, g+&?J2, h+--Bof 

Ho 

as i j + O  for all -co < z" < co, where we have put 

B, = Bo(z") = B($H0) .  

Y = ( t C , - E ) ~ Q ,  

To find the 'viscous' wall-layer solution we put - 

(5.43) 

(5.44) 

(5.45) 



246 

and seek a similarity solution of the form 

M .  E .  Goldstein, S .  J .  Leib and S.  J .  Cowley 

U = ((s-~)"2"Fw(F,2), 

V = ( ( s - ~ ~ G w ( r ' , 2 ) ,  

w = ((,-z)t""H,(F', 2) .  

Matching with (5.43) requires that 

Fw-F, G , - P ,  

as F+ m,  and consequently that 
a = 0.  

It therefore follows from (5.9)-(5.11) and (5.45)-(5.48) that 

and 

(5.46) 
(5.47) 

(5.48) 

(5.49) 

(5.50) 

(5.51) 

(5.52) 

(5.53) 

The viscous wall conditions require that 
- 

F, = G, = H ,  = 0 at Y = 0. (5.54) 

The appropriate solution to this problem, i.e. the one that matches to (5.43), is 
given by 

3 
F, = &(l +Bi)  r', G ,  = &P, H ,  = ---BOP,. 

Ho 
(5.55) 

It follows that the wall shear must behave like 

(5.56) 

where .?: = 6[l +B2(iz"H,)]. (5.57) 

5.3. The inner boundary-layer solution 
Close to the singularity, where (-6, = O(a), the boundary-layer solution must 
match onto the inner solutions (4.14)-(4.17) (rather than onto (3.20)) and onto the 
terminal forms (5.20)-(5.22) and/or (5.46)-(5.48) of the boundary-layer solutions 
(5.5)-(5.7). The simplest possible structure for this region will then involve two layers 
with an effectively constant-pressure upper-layer solution of the form 

u = u*cR g1, a, (5.58) 

(5.59) 
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and 

where 
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p = e2 d(z) +O(S&,)~, 

(5.61) 

(5.62) 

A Z  

U3 
(5.63) 2 = 7 = O(1) 

and, in order to match with (5.5)-(5.7) and (5.20)-(5.22) we must take 

6 6, =;. (5.64) 

Substituting these into the Euler equations (viscous effects are, of course, 
negligible on the short streamwise lengthscale (4.12) or (5.62)) we find that U,, V, and 
W, still satisfy the three-dimensional inviscid, copstant pressure boundary-layer 
equations (but now in terms of the inner variables E,  g,, and z^) which means that W, 
and U, are related by 

(5.65) 

where i is an arbitrary function of the indicated arguments that is ultimately 
determined by the boundary conditions and the (I?W,/3U,)2 term, which could have 
been incorporated into 8, has been inserted for convenience. U, can, at least in 
principle, be determined by solving (5.65) for W, and substituting the result into the 
continuity equation with V, eliminated via one of the momentum equations. 

Matching with the free-stream solution in (4.14) requires that 

U,+l  as g,+co, (5.66) 

and, since U,- 1, W,, and (l/g,) W,c all satisfy the same perturbed momentum 
equation when UI+ 1, it follows that U, and W, can be expressed as functions of 
(l/gI) W,l when g, + co and therefore that we can choose i so that 

(5.67) 

Equation (5.65) will then match onto the free-stream solution (4.16), (4.25) and 
(4.27) while matching with the upstream solution (5.20) and (5.22) requires that 3 
remain bounded and 

(5.68) 

as l+- co and/or 2+& co (see (4.9)). 
The inviscid expansions (5.58)-(5.60) are again invalid in the near wall region 

where yI+O. However, the scalings (5.62) and (5.63) should still hold and the 
upstream solutions (5.46)-(5.48) suggest that u and w will be O(U) and O($S), 
respectively, there. The viscous terms will then be of the same order as the 
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ll~3nc:l::a;:: 

T r ,  

x = ts 

FIQURE 3. Overview of asymptotic structure. 

convection terms when g = O(1) and it follows from the requirements of continuity 
that the wall-layer solution should scale like 

u = U Q g ,  99% (5.69) 

(5.70) 

(5.7 1) 

Then it follows from the Navier-Stokes equations that the order-one quantities 
D1, VI, W, are again determined by the viscous wall condition (5.16) an4 the zero 
pressure gradient boundary-layer equations (5.9)-(5.11) (but now with 6 and z  ̂ in 
place of z and z ) .  

1 -  A w = €U% WI(6, g, z”). 

Matching with the upstream solutions (5.46)-(5.48) requires that, 

U p - & l  + B i ) y ,  (5.72) 

( -  !&B,( 1 +Bi)  g ,  (5.73) 
- 3 w*+-- 

HI3 

etc., as E+- co. 
The upper- and lower-layer solutionsAmust, of course, match to  each other in some 

overlap domain g,+O, g+ 00 with [ = O(1). This will only occur if U, - &?, as 
gI+O, whiah actually turns out to be the case. However, this in itself does not 
guarantee that matching and/or solvability will occur and it may be necessary to 
introduce some intermediate region and/or pressure variations to complete the 
solution, We do not pursue this further, but merely mention that the problem can 
be solved in closed form and leave the details to a forthcoming report. 

Figure 3 summarizes the overall asymptotic structure of the problem developed in 
this and the preceding sections. 

6. Numerical solution of the boundary-layer problem 
Numerical solutions to  the full three-dimensional boundary-layer problem 

(5.9)-(5.11), (5.17) and (5.16) were obtained using the Keller box method (Keller & 
Cebeci 1972; Cebeci & Smith 1974; Cebeci, Khattab & Stewartson 1981). This finite- 
difference procedure advances the solution in z and z from given initial conditions 
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and an independent symmetry-plane calculation. With an appropriate choice for the 
upstream distortion (such as the one described in $7)  the marching in z can proceed 
from the symmetry plane at z = -n: to the one at  z = 0. In the absence of any 
crossflow reversal the standard box (Cebeci et al. 1981) was found to be adequate. The 
Blasius solution is the appropriate initial condition a t  z = 0. 

Since the boundary layer becomes very thick near the singularity in the external 
inviscid solution, the stretched transverse variable 

was introduced. Then, following the standard procedure, the boundary-layer 
equations are written as a system of first-order differential equations 

u = p ,  w = q  

2 + Z Z  
1+- n: 

W +  
z iau 

where ’ = a/a$. 
The boundary conditions are given by (5.15)-(5.17) and 

e(z, i j  = 0, z) = 0. 

A non-uniform mesh is used in the cross-stream coordinate such that the J mesh 
points are distributed according to 

Kj-  1 
i j o  = o ;  qj=lhhl-- j = 1,  J .  

K - 1 ’  

This has the effect of increasing the local mesh size from its smallest value near the 
wall, h,, by a fixed percentage (prescribed by the constant K )  for each subsequent 
box, 

The introduction of the finite-difference approximations yields a nonlinear system 
of equations for the unknown variables at the next (streamwise or spanwise) cross- 
grid point. The nonlinear system is linearized about a previous iteration (or initial 
guess) by Newton’s method. The difference between two iterations is solved for in an 
efficient way by the block tridiagonal procedure until convergence is achieved. 

7. Results and discussion 
Since vorticity is carried by the fluid particles in an inviscid flow, vortex lines that 

are perpendicular to the plate a t  upstream infinity become infinitely elongated as 
they pass over the plate leading to infinite velocities and infinitesimal lengthscales 
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that can only be eliminated by viscous effects. This vortex stretching produces the 
logarithmic singularity in the initial linear inviscid solution which, incidentally, is 
well known in classical rapid-distortion-theory literature (Hunt & Carruthers 1990). 
There is also a much more interesting nonlinear singularity that develops further 
downstream in the flow and leads to the formation of small spanwise lengthscales. It 
results from the fact that the large spanwise velocity field diminishes the effect of the 
horizontal pressure gradients to the point where the spanwise velocity is a purely 
convected quantity to lowest approximation. I ts  convective nature is quite similar 
to the unsteady separation singularities studied by Cowley, Van Dommelen & Lam 
(1990) and by Russell & Landahl (1984). 

The blending-layer singularity causes the vertical (or upwash) velocity to become 

(7.1) 
infinite along a line 

zv = 6, = const. 

in the ( z  = 0)-plane (see figure 2) with the spanwise velocity solution (3.16) being 
discontinuous across the portion of the plane extending downstream of this line. The 
upwash singularity is eliminated by a local asymptotic solution (constructed in $4) 
that fully couples the spanwise and vertical velocity fields but allows the downstream 
discontinuity to extend into the local asymptotic region surrounding the singularity. 

We have seen that the blending-layer solution involves a function F that is related 
to the (imposed) upstream distortion field, i.e. u,, by (3.18) with the constant a being 
determined by the local potential flow in the vicinity of the forward stagnation point. 
The latter can easily be scaled out of the blending-layer problem as well as the wall 
boundary-layer problem, to be discussed below, by replacing 6 by in (5.1), (5.4), 
(5.6) and (5.7). 

Our interest is primarily in periodic disturbance fields and, for definiteness, we 
choose 

in which case the initial singularity will lie a t  

u, = - cos 2, (7.2) 

cs = 1. (7.3) 

The choice (7.2) has special symmetry properties which may make some of our results 
(particularly those for the boundary layer to be discussed below) less than universal. 
However, this issue is beyond the scope of the present work and will be discussed in 
a ‘follow-on’ paper. 

Figure 4 is a plot of the scaled crossflow streamline patterns within the inviscid 
blending layer as calculated from (3.14) and (3.16). They show that the blending- 
layer flow is just the lower portion of the large streamwise vortices that reside a t  an 
0(1) distance from the wall. The streamlines are tangent to the symmetry plane when 
z < 1 because the crossflow velocity vanishes there, but they intersect the symmetry 
plane over a finite range of 7 when Z> 1 owing to the previously described 
discontinuity in the solution (3.16) for ti+,. The region of intersection first appears at  
the wall (i.e. 7 = 1) when z = 1 and then spreads out over a finite range of 7 as Z 
increases downstream. This suggests that the boundary layer will separate from the 
wall at z = 1. 

The streamlines also intersect the wall at 7 = 1, but, as will be shown below, this 
streamline pattern is smoothly turned around by the viscous boundary-layer flow to 
form the bottom of the vortex pattern. This is possible because the physical (i.e. 
unscaled) 7-velocity is much smaller than the spanwise velocity and can therefore 
match onto the small upwash velocity at the edge of the viscous boundary layer. 
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FIGURE 4. Flow patterns constructed by drawing lines everywhere parallel to the vector (ao, vo) in 
the crossflow plane for z = (a) 0.25, ( b )  0.5, (c) 1.0, ( d )  1.5, ( e )  2.0. The inviscid singularity location 
is marked with @. Arrows denote flow direction. 

The characteristic streamwise lengthscale L* of the boundary-layer flow is given 
bY 

2Aa 

E In (Rh E);' 
L* = - (7.4) 

when L* is renormalized to absorb a into the scaling. The boundary-layer singularity 
therefore develops on this scale, which means that it occurs further downstream 
(relative to the characteristic lengthscale A of the disturbance) as the characteristic 
amplitude E of the upstream disturbance and the leading-edgeldisturbance scale 
Reynolds number R, decrease. R, must, of course, always remain large in order for 
our analysis to be valid. The effect of the leading-edge geometry is accounted for by 
the factor a. 

The upstream boundary-layer flow is predominantly two dimensional and there is 
an overlap region (in which z 4 1 and x 9 1 )  where it is given by the Blasius solution. 

9 FLM 137 
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FIGURE 5 Streamwise velocity contours in crossflow plane for Z = ( a )  0.25. ( b )  0.5. (c) 0.75, 
( d )  0.9. The levels shown are. from top to  bottom, C 7 =  0.9. 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1. 

This solution is therefore the appropriate upstrcarn boundary condition for the Z- 
scale boundary-layer problem under discussion. Contours of the computed 
streamwise velocity in the crossflow plane are shown at a number of streamwise 
positions in figure 5 .  They show the gradual development of spanwise variations in 
the velocity profiles with increasing downstream distance. The most significant 
effects occur near the symmetry plane, which lies a t  x = 0. These results clearly show 
the anticipated localized thickening of the boundary layer in this region and the 
associated reduction in spanwise lengthscale. 

Benney (1984) was among the first to show that asymptotically small modulations 
occurring on sufficiently short lengthscales can lead to order-one changes in the mean 
flow. However, Benney's modulations arose from interacting instability waves and 
are fundamentally different from the steady upstream distortion effects being 
considered herein. 
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FIGURE 6. Upwash velocity profiles as a function of ?j and z for ?E = (a)  0.25, ( b )  0.5, (c) 0.75, 
( d )  0.9. 

Figure 6 is a plot of the corresponding upwash velocity profiles. It shows that the 
upwash velocity becomes very large in the vicinity of the symmetry plane z = 0 as 
z+- 1. The dramatic local increase in this velocity component might be described as 
a kind of ‘bursting phenomenon ’ which, up to now, has primarily been associated 
with unsteady flows. This might lead to a local transition of the boundary layer and 
therefore provide a possible mechanism for by-pass transition. The answer to this 
question depends on the stability of the solution to the local rescaled boundary-layer 
problem of 35.3. The final resolution of this issue is therefore beyond the scope of the 
present work but will be pursued in a forthcoming paper. 

The velocity vectors in the crossflow ( z ,  y)-plane a t  the same streamwise stations 
9.2 
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are plotted in figure 7 .  They show that the large upwash velocity is produced by a 
spanwise flow into the symmetry plane. 

The analysis of 5 5.2 shows that the boundary-layer solution develops a double- 
layer structure with the terminal form of this solution given by (5.20)-(5.22), (5.26), 
(5.33) and (5.41) in the upper inviscid region whose thickness increases like 

- as z+l ,  (7.5) 
1 

1-9 

and by (5.46)-(5.48) and (5.55) in the lower viscous region, whose thickness remains 
O(1) as E+ 1. The solution in this region is identical to the limiting asymptotic form 
of the solution in the upper region so that the lower layer is not a distinct asymptotic 
region but is part of the upper inviscid region to the order of approximation of the 
analysis. 

The solution becomes particularly simple on the symmetry plane where it implies 
that 

and 

where the function f is indeterminate and has to be found from the numerical 
solution. The solution in the lower layer is still given by these formulae but withf 
equal to its asymptotic form 

where d is a constant. 
f = @j, (7.9) 

The numerical results of figures 5-7 are in qualitative agreement with this terminal 
asymptotic solution of the three-dimensional boundary-layer problem. This includes 
the local thickening of the boundary layer at the symmetry plane, the development 
of a short spanwise lengthscale, and the development of a very large upwash velocity. 

To obtain an accurate quantitative check on our terminal asymptotic solution we 
worked out the numerical solution to the symmetry plane boundary-layer equations 
starting from the upstream Blasius solution. These equations can, of course, be 
solved independently of the flow in the rest of the boundary layer and are much 
simpler than the full three-dimensional equations. It turns out that (7.7) and (7.8) 
constitute an exact solution to these full equations and still satisfy the correct free- 
stream boundary condition, so that the numerical problem is especially simple in this 
case. 

Figure 8 (a)  is a plot of the symmetry plane streamwise velocity profiles (at various 
values of Z) as a function of the composite singularity coordinate 8(1-~)/&. It 
merely shows that the profiles go smoothly from their initial Blasius to their final 
asymptotic forms. Figure 8 ( b )  shows that these profiles look quite different when 
plotted against the unscaled coordinate ij and again reflects the dramatic thickening 
of the boundary layer. The predicted linear behaviour at the wall is also evident from 
this figure. The calculated wall shear stress is shown in figure 9. The asymptotic 
linear behaviour and the ultimate vanishing of the wall shear, predicted by (5.56), is 
clearly verified by these results. 

To check the terminal asymptotic solution off the symmetry plane, we compare 
the results of the full three-dimensional computation with the asymptotic similarity 
solution. 
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FIGURE 8. Streamwise velocity profiles on the symmetry plane as a function of (a)  g( 1 -Z)/d, 
and ( b )  g at various values of E.  

The asymptotic solution requires that the crossflow velocity tends to (5.31) a t  the 
outer edge of the boundary layer. Figure 10 shows a comparison of a as determined 
from (5.31) with curves obtained from numerically computed solutions of the inviscid 
Burgers’ equation (equation (5.15)) with (7.2) at a number of zpositions. The latter 
is the boundary condition used for the crossflow velocity in the numerical 
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FIGURE 9. Wall shear on symmetry plane as a function of Z. 
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FIGIJRE 10. Comparison of the crossflow velocity at the edge of'the boundary layer from -, 
numerical solution and ---, equation (5.31). 

computation. Figure 10 shows that the solutions first agree with (5.31) for Znear zero 
(the symmetry plane) and that agreement is attained over a broader range in z" as z 
gets closer to 1. This comparison gives an indication of the ranges over which we can 
expect the numerically computed boundary-layer solution to  agree with the 
asymptotic similarity solution. 

Figure 11 is a comparison of the calculated wall stress .? with results obtained from 
(5.57) with 6 determined from the slope of the symmetry plane wall shear curve in 
figure 9 and H ,  taken to  be 2.1. 

A similar comparison for the spanwise wall shear 

where 
3.3 

Z(5) = -,B(;z"Ho) [l +B2(;z"H0)], 

(7.10) 

(7.11) 
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FIQURE 11. Comparison of the streamwise wall shear stress from -, numerical solution and 
~~~ , asymptotic similarity solution. 
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FIQURE 12. Comparison of the spanwise wall shear stress from -, numerical solution and 
_ _ _  , asympt.otic similarity solution. 

is shown in figure 12. These results suggest that the asymptotic behaviour is first 
achieved near 2 = 0 and spreads out away from the symmetry plane as I gets closer 
to 1. It is worth noting that ? has its minimum a t  2 = 0 while the spanwise shear is 
linear there. 

The vanishing of the wall shear a t  Z= 1 is indicative of the formation of a 
singularity in the boundary-layer solution a t  this point. But the fact that this 
singularity is directly attributable to a removable singularity in the outer inviscid 
solution strongly suggests that it is basicaly inviscid in nature and that it too may 
be removable. The final resolution of this issue requires a solution to the local 
rescaled boundary-layer problem of 55.3, which is beyond the scope of the present 
work. The non-removability of the singularity would require that the upstream flow 
field predicted by our analysis be modified owing to some form of boundary-layer 
separation that would have to  be accounted for in the initial formulation of the 
inviscid flow problem. This separation, which is definitely of the boundary-layer 
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collision type, might be similar to the ‘open ’ separation found by Stewartson, Cebeci, 
& Chang (1980) (see also Stewartson & Simpson 1982). It could, of course, be 
eliminated by terminating the plate before the singularity had a chance to form. 
Even if this is not done the local decrease in wall shear stress could promote 
instability and transition upstream of the singularity and again modify the flow 
before the singularity can occur. 

Finally, we note that the present study bears some resemblance to the receptivity 
analysis of Goldstein (1983, 1985), Goldstein, Sockol & Sanz (1983) and Goldstein, 
Leib & Cowley (1987) in that it involves the internalization of free-stream 
disturbances with an attendant streamwise amplification of the perturbed boundary- 
layer flow, but i t  differs from them in that it only involves changes in the mean flow 
and does not depend on the growth of local instability waves to produce the final 
effect. 

The authors would like to thank Professor A. F. Messiter of the University of 
Michigan for helpful discussions during the course of this work. 

Appendix 
In  this Appendix we investigate the singular behaviour of the drift function in the 

vicinity of the forward stagnation point where the complex potential w behaves like 

IF - -+P, (A 1) 

and a is a real constant that  is determined by matching with the ‘outer’ potential 
flow. It therefore follows from (2 .5)  that 

- 1  c = -  a2 = - ( -  2aW)z, 
and, consequently, that 

Hence 
1 4 2  = 2a(@2+ P)+. 

It follows that 

A - - -  ‘1nY as Y+O when @ > O .  (A 5) a 
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